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Abstract

This paper studies the role of inflation in greasing the wheels of the labor market. To do so, it

unifies the theory of frictional labor markets with a theory of nominal wage adjustment. The model

features worker heterogeneity, endogenous quits and layoffs, on-the-job search, and on-the-job wage

renegotiation. Renegotiation costs together with the requirement of mutual agreement lead to a state-

dependent process for on-the-job wage renegotiation. We parametrize the model to match important

features of the distribution of wage changes within jobs and across jobs measured with administrative

microdata. The new framework reproduces the anatomy of labor market dynamics during episodes of

inflation surges, such as the ones observed in Argentina’s 2001 inflation episode.
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1 Introduction

The labor market plays a crucial role in the analysis of business cycle dynamics, making the study of

frictions affecting this market, particularly in the form of sticky wages, essential in macroeconomic

analysis. Empirically, the presence of infrequent wage adjustment is a pervasive feature observed in wage

micro-data (see Grigsby et al., 2021; Hazell and Taska, 2022; Blanco et al., 2022a, for recent measurement of

sticky wages). From a positive perspective, sticky wages are often cited as the primary friction responsible

for explaining the effects of monetary shocks (Christiano et al., 2005), the volatility of unemployment

(Shimer, 2005a; Hall, 2005), and employment dynamics across fixed and floating exchange rate regimes

(Schmitt-Grohé and Uribe, 2016). From a normative perspective, understanding the welfare consequences

associated with fluctuations in unemployment due to sticky wages is crucial for the design of effective

fiscal and monetary policies together with social insurance policies.

Wage adjustments may occur in three distinct scenarios: firstly, during the tenure of a current job as a

result of bargaining between a firm and worker; secondly, following a job-to-job transition when a worker

moves to a new firm; and thirdly, following an unemployment spell when a worker is separated from

their current job and seeks new employment opportunities. Given that significant wage changes occur

across jobs due to job switching, any theory of wage rigidity must explicitly incorporate a model of labor

mobility. A natural starting point is the search and matching model of Pissarides (1985), which has been

widely used to study the labor market dynamics of unemployment and vacancies.

This paper unifies the theory of frictional labor markets with a theory of nominal wage adjustment to

analyze the aggregate fluctuations of wages and employment. The premise guiding our paper is that the

analysis of these fluctuations should be grounded on a model informed by microdata on wage adjustment

within and across jobs, which constitutes the primary contribution of our study.

Model Overview. We develop a new model of a frictional labor market with directed and on-the-job

search. The model incorporates three key features: (i) idiosyncratic worker productivity shocks, (ii)

two-sided limited commitment, and (iii) wage rigidities. The first feature, idiosyncratic shocks to worker

productivity, serves as the fundamental driver of wage adjustment and labor mobility in our model. It is

crucial to consider such shocks, as microdata on wages cannot be adequately explained solely by aggregate

shocks; rather, they predominantly reflect idiosyncratic fluctuations in workers’ productivity. The second

feature introduces the possibility that workers and firms may choose to unilaterally abandon a match

when it is individually advantageous but not necessarily in the best interest of the match, potentially

leading to inefficiencies.
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Our first contribution focuses on the analysis of wage rigidities within the job. In the model, wage

rigidities result from the presence of renegotiation costs and the requirement that bargaining occurs

under mutual agreement. While renegotiation costs trivially lead to wage stickiness, as menu costs do

in the pricing literature, the effect of mutual agreement on wage stickiness is more nuanced and novel.

On the one hand, changes in real wages can alter the distribution of rents between firms and workers,

making wage adjustments primarily a redistributive concern. On the other hand, wage changes can

improve match efficiency by reducing the likelihood of inefficient layoffs and quits, thereby justifying

wage adjustments for efficiency reasons. Hence, the requirement of mutual agreement prevents wage

changes when their primary motive is redistributive, as one of the agents would refuse to negotiate.

As a result, wages remain fixed insofar the experienced cumulative productivity shocks on-the-job are

relatively small. Instead, wages are renegotiated only when the worker’s productivity is sufficiently high

(resp. low) relative to the current wage and the match is close to the quit (resp. layoff) threshold.

While these mechanisms affect wage adjustment within a job, our model also incorporates endogenous

on-the-job search effort, which shapes wage adjustment through labor mobility to a new job. In the model,

search effort is high when the wage is either too low or too high relative to productivity. In the former

case, workers search to move up the job ladder, a prediction shared with canonical models of on-the-job

search. Instead, in the latter case, workers search on-the-job to find a new job before being laid off—a

novel prediction of our framework consistent with empirical evidence (Fujita, 2010).

Taking these ingredients into account, our model predicts wage changes within and across jobs that

are state-dependent, meaning that the current wage determines the probability and magnitude of future

wage adjustments. Thus, our economic framework establishes a state-contingent wage Phillips curve

based on micro-level labor flows.

Taking the Model to the Data. Our theory ignores many features in the microdata whenever we generate

aggregate fluctuations in the labor market. For that reason, the mapping data to the model is not trivial,

and we want to do the first step in this direction. The two dimensions in the data that our model abstract

are: (i) transitory fluctuation in wages, and (ii) changes in wages across jobs due to permanent differences

across firms. To tackle these challenges with the demanding data requirement, we use administrative

employer-employee-match monthly labor income data from Argentina.

Although our administrative data may contain negligible measurement error, our model abstracts from

many sources of transitory deviations from a modal or permanent wage (e.g., workers on commission

or intensive margin labor supply). We construct a measure of the regular wage following the Break Test

methodology developed in Blanco et al. (2022b). In a nutshell, the logic behind this methodology is to split
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a nominal wage series into two continuous subsamples and perform a statistical test of whether those

subsamples were drawn from the same distribution using the Kolmogorov-Smirnov statistic. In addition,

our model abstracts from wage differences arising from firm heterogeneity; in the model, productivity

differences are only driven by workers’ idiosyncratic shocks. Therefore, we filter the data on wage changes

across firms to remove the proportion of wage changes arising from firms’ fixed heterogeneity.

We calibrate our model to match labor flows and the distribution of wage changes in our microdata.

Our model can generate the size and dispersion of wage changes within and across jobs. We then use the

parametrized model to study the dynamics of aggregate wages and employment following an inflation

surge.

Inflation Greases the Wheels of the Labor Market: Evidence Meets Model. The international macroe-

conomics literature provides compelling empirical evidence supporting the role of inflation in mitigating

the adverse effects of wage rigidity. As Schmitt-Grohé and Uribe (2016) remark, there is a considerable

quantitative difference in unemployment dynamics between countries with floating exchange rate regimes

and those with fixed exchange rate regimes. A fixed change rate provides nominal stability, which leads

to the propagation of productivity fluctuations to unemployment. Testing our theory in such settings is

infeasible due to the absence of inflationary shocks. Instead, significant devaluations serve as unexpected

and substantial shocks to the aggregate inflation rate, playing a stabilizing role during recessions by

reducing real wages, as demonstrated by Blanco et al. (2022c). Leveraging this insight, we seize the

opportunity provided by the 2001 Argentinean recession and the subsequent shift away from a fixed

exchange rate regime to test our theory in a real-world laboratory setting.

Before 2001, Argentina experienced a notable decoupling of real wages from labor productivity. In

the context of negative growth and macroeconomic instability, a 7% decline in marginal product of labor

between 1998 and 2001 implies that real labor income should have similarly fallen by 7%. However,

average real wages remained relatively stable, accompanied by a significant increase in unemployment

resulting from a decrease in the job-finding rate and a surge in job separations in 2001. Following the

departure from the fixed exchange rate, a substantial devaluation led to an increase in inflation to 35%,

following several years of near-zero or negative inflation rates. Consequently, real wages adjusted in

line with inflation, with a significant drop in job separations being the main driver of the employment

recovery.

Our model replicates the dynamics of real wages and employment during this episode. We reproduce

this episode with an exogenous drop in labor productivity and an unexpected inflation surge. The

model matches the main driver of unemployment, which is the aggregate separation rate. Prior to
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the inflation shock, labor productivity experiences a prolonged decline. Due to wage rigidity, many

workers face elevated wage-to-productivity ratios, prompting firms to lay off more workers than in

the steady state. Following the inflation surge, the distribution of wage-to-productivity ratios shifts to

lower levels, resulting in an immediate reduction in the job-separation rate, consistent with the data.

It is noteworthy that our model generates unemployment dynamics without downward wage rigidity

constraint at the aggregate level; instead, aggregate dynamics stem from fluctuations in the distribution

of wage-to-productivity ratios across workers. This aspect is crucial since many micro-level wage changes

across jobs involve wage reductions, making it challenging to justify any micro foundation for downward

wage rigidity.

Literature Review. Our paper is situated within various strands of literature, primarily focusing on

the interaction between inflation and the labor market. Notably, in his presidential address, Tobin (1972)

highlighted the social efficiency of unemployment resulting from workers searching for suitable jobs,1

while also recognizing that frictions in wage setting, such as wages being set in nominal terms, could

create a disparity between the marginal product of labor and real wages. In particular, price inflation,

“is a neutral method of making arbitrary money wage path conform to the realities of productivity

growth” (Tobin, 1972, p. 13). Subsequent studies have explored Tobin’s hypothesis, yielding mixed

findings regarding the impact of inflation on wage adjustment. For instance, Card (1990) studied the

effects of effect of nominal contracting provisions in union contracts and found that real wage changes

due to unexpected price changes are associated with employment responses in the opposite direction.

Additionally, Ball (1997) demonstrated that the effects of disinflation on unemployment were more

pronounced in countries with heavily regulated labor markets. More recent research by Coglianese

et al. (2021) focused on the effect of monetary shocks in Sweden, revealing that sectors with more rigid

wage contracts experienced larger increases in unemployment following such shocks. We contribute

to this literature by developing a model based on micro-level labor flows, where interactions between

real and nominal shocks determine aggregate wages and unemployment. Our model introduces a novel

mechanism, whereby the distribution of real wages serves as the state of the economy. Consequently,

the impact of inflation on unemployment becomes state-dependent, underscoring the importance of

considering the distribution of real wages across workers.

The process of adjustment of wages within and across jobs is crucial for aggregate labor dynamics

in our model. Existing literature has studied the distribution of wage changes within jobs, revealing

1“The new microeconomics of job search (see Edmund Phelp et al.), is nevertheless a valuable contribution to understanding
of frictional unemployment. It provides reasons why some unemployment is voluntary, and why some unemployment is socially
efficient” (Tobin, 1972, p. 7).
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asymmetry and a missing mass of negative wage changes at low inflation levels (Dickens et al., 2007;

Barattieri et al., 2014; Grigsby et al., 2021). Sigurdsson and Sigurdardottir (2016) observed that although

nominal wage cuts are rare, their frequency rises following a large macroeconomic shock (e.g., the 2008

Great Recession), while Blanco et al. (2022a) documented that the distribution of nominal wage changes

loses its asymmetry around zero as inflation increases. Here, we contribute to this literature by providing

a model that uses the micro-evidence on wage adjustment to estimate key parameters of the wage

adjustment process, akin to the approach employed in the pricing literature (see Golosov and Lucas,

2007).

Numerous papers have incorporated wage rigidity into search and matching models, often introducing

it in a manner that does not disrupt existing matches and therefore does not lead to inefficient separations.

For instance, Hall (2003) and Elsby et al. (2022) assume wage changes to prevent inefficient separations,

while Gertler and Trigari (2009) consider small aggregate productivity shocks around the steady-state

that do not trigger inefficient layoffs. Our micro-foundation takes a different approach. We assume that

bargaining occurs under mutual agreement and is subject to renegotiation costs, which in conjunction

with two-sided limited commitment can lead to inefficient flows, as empirically documented by Jäger et al.

(2022). By doing so, we develop a framework that includes all wage adjustment opportunities observed

in modern labor markets as the outcome of choices of optimizing agents while grounding them with

micro-data, thereby addressing the critique put forth by Barro (1977).

2 A Model

This section describes a search and matching model to study inflation’s role in greasing the labor market

wheels. At its core, the model is similar to Blanco et al. (2022b) with idiosyncratic and aggregate shocks,

sticky wages, and two-sided limited commitment. We extend this framework in two ways. First, we

introduce renegotiation costs with mutual agreement. These features provide a theory of on-the-job wage

renegotiation. Second, we incorporate on-the-job search following the work of Menzio and Shi (2010).

Taken together, the model produces an empirically-oriented micro-foundation of aggregate wage and

employment dynamics by departing from micro-labor flows and wage changes.

2.1 Environment.

Time is continuous and indexed by t. An exogenous unit mass of workers, denoted by i ∈ [0, 1], and an

endogenously determined mass of firms meet in a frictional labor market. The economy is subject to

transitory and deterministic aggregate shocks to labor productivity, denoted as At, and the price level,
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denoted as Pt. Throughout the paper, we use lower-case letters to represent the natural logarithm of

variables in upper-case letters. For example, at denotes the log aggregate productivity. Workers maximize

the expected discounted utility from consumption, while firms maximize the net present value of profits.

All agents discount the future at a common rate ρ > 0.

Preferences. Workers value an expected discounted consumption stream {Cit}∞
t=0 with risk-neutral

preferences:

E

[ˆ ∞

0
e−ρtCit dt

]
.

Technology. A worker’s flow income depends on her employment state Eit, which can be either em-

ployed (h) or unemployed (u), as well as her productivity. The worker’s idiosyncratic productivity zit

follows a Brownian motion in logs with drift γ and volatility σ—dzit = γ dt + σ dWit. While employed,

a worker produces ezit+at units of a homogeneous good and receives flow real income equal to the real

wage ewit−pt . While unemployed, a worker receives flow income B̃ezit from home production.

Wage-setting Mechanism. We assume that entry wages are competitively set. Nominal wages are

rigid on-the-job, and wage renegotiations entail paying a stochastic cost ψt(∆w)ezt in units of output,

which could be different for positive or negative wage changes. If the intended wage change is positive,

with probability 1 − β+ dt the cost is ψt = ∞, and with probability β+ dt, it is a random variable with

c.d.f. G+(ψ). Similarly, for intended negative wage changes, with probability β+ dt, the cost is a random

variable with c.d.f. G−(ψ) and with probability 1 − β− dt the cost is infinitely large. If there is mutual

consent in the renegotiation process, the new wage is set according to the Nash Bargaining solution, where

the worker’s bargaining power is denoted by χ. The timing of the wage adjustment is the following.

First, the stochastic cost is realized, and the firm decides whether or not to pay it. At that point, the

renegotiation cost is a sunk cost. Then, the new nominal wage is renegotiated between the worker and

the firm.

Job Creation. Workers search for jobs in a frictional labor market. Inspired by Moen (1997), search is

directed and segmented across submarkets according to the log wage w and the worker’s log productivity

z. In each submarket (z; w), firms post vacancies V at cost K̃ez until the marginal expected cost of vacancy

posting equals its expected benefits, represented by the value of a filled job. Workers can search for jobs

in a single submarket at a rate that depends on their employment status. We assume that unemployed
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workers search at a constant rate, which we normalize to one. Instead, employed workers can choose

their search intensity s by incurring a cost of c(s) = µ
1+1/ϕ s1+1/ϕez in market (z; w), where ϕ > 0.

Given S =
´

i si di total effective units of search efficiency and V vacancies in a submarket (z; w), a

Cobb-Douglas matching function with constant returns produces m(S ,V) = SαV1−α matches, where α

represents the elasticity of matches to the effective units of searchers. As a result, a worker’s i job-finding

rate is given by their search intensity si multiplied by the job-finding rate per unit of search intensity

si f (θ) = sim/S = siθ
1−α. Similarly, a firm’s job filling rate is q(θ) = m/V = θ−α, where θ := V/S

denotes the market tightness in submarket (z; w). Thus, the job-finding rate of the unemployed is f (θ),

and for an employed worker exerting a search intensity s, it is given by s f (θ).

Job Destruction. Existing matches can get exogenously dissolved according to a Poisson process with

an arrival rate δ. In addition, we assume that workers and firms cannot commit to the labor contract.

Therefore, at any point in time, the match can be endogenously and unilaterally dissolved by either the

worker or the firm.

2.2 Recursive Equilibrium

Before delving into the equilibrium conditions, we note three properties of the model. First, due to

the proportionality of unemployed workers’ flow income, firms’ vacancy costs, and search costs to

idiosyncratic productivity ez, the relevant state variable for both workers and firms is the log-real wage-to-

productivity ratio, denoted as ŵ := w − z − p, which we simply refer to as the relative wage. Second, as

search is directed, agents’ equilibrium values and policies do not depend on the distribution of workers’

idiosyncratic states. Third, since the path of aggregate variables is deterministic, we index all the policies

and values with t.

Let jt(z; w), ut(z), and ht(z; w) denote the values of firms, unemployed and employed workers.

Similarly, let θ(z; w) be the market tightness in market (z; w). The properties described above imply

that these values can be expressed as jt(z; w) = Ĵt(w − z − pt)ez, ut(z) = Ûtez, and ht(z; w) = Ĥt(w −
z − pt)ez + Ût where Ĵt(ŵ) and Ût denote the firm’s and the unemployed worker’s values per unit of

productivity, and Ĥt(ŵ) represents the value of an employed worker per unit of productivity net of

the unemployment value. Similarly, let θt(z; w) = θ̂t(w − z − pt) be the market tightness in market

(w − z − pt). These properties regarding the value functions similarly extend to agents’ policy functions.

For instance, if w∗
u,t(z) and w∗

jj,t(w, z) denote the optimal target wages for unemployed and employed

workers, then we can express them in terms of a single state variable as w∗
u,t(z) = ŵ∗

ut − z − pt and

w∗
jj,t(w, z) = ŵ∗

jj,t(w − z − pt)− z − pt.
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Next, we present the equilibrium conditions, and for a detailed derivation and explanation of these

conditions, we refer to Blanco et al. (2022b).

Employed Worker’s Optimality Conditions. The employed worker’s decision-making involves choos-

ing a search strategy, which includes a search intensity s∗t (ŵ) and a submarket ŵ∗
jj,t(ŵ), and the set of

states where staying in the match is optimal, referred to as the worker’s continuation set Ŵh∗
t . Given

the firm’s optimal continuation set Ŵ j∗
t , the worker’s Hamilton-Jacobi-Bellman Variational Inequality

(HJBVI) equation is given by

ρ̂Ĥt(ŵ) = max

{
eŵ − ρ̂Ût︸ ︷︷ ︸

Income net of opportunity cost

− (γ̂ + πt)
∂Ĥt(ŵ)

∂ŵ
+

σ2

2
∂2Ĥt(ŵ)

dŵ2︸ ︷︷ ︸
Idiosyncratic productivity shocks

− δĤt(ŵ)︸ ︷︷ ︸
Exog. separation

+
∂Ĥt(ŵ)

∂t

+s∗t (ŵ) f (θ̂t(ŵ∗
jj,t(ŵ)))[Ĥ(ŵ∗

jj,t(ŵ))− Ĥt(ŵ)]− µ (s∗t (ŵ))1+1/ϕ

1 + 1/ϕ︸ ︷︷ ︸
Change in value from on-the-job search

+ β+∆+Ĥt(ŵ)G+(∆+ Ĵt(ŵ)) + β−∆−Ĥt(ŵ)G−(∆− Ĵt(ŵ))︸ ︷︷ ︸
Change in value from positive and negative wage changes

, 0

}
, ∀ŵ ∈ Ŵ j∗

t , (1)

where ρ̂ := ρ − γ − σ2
z

2 , and ρ̂ := γ + σ2. In the set of states in which the firm chooses to stay in the

match, equation (2.2) shows that workers first choose whether to quit and receive a normalized value of

zero or stay in the match and receive the continuation value. The first term in (2.2) represents the flow

income net of the opportunity cost of employment. The second term captures the effects of idiosyncratic

productivity shocks and aggregate inflation on relative wages. The third term represents the value change

due to exogenous separation. The second line in (2.2) captures the event in which the worker pays

a search cost to meet a new firm at rate s∗t (ŵ) f (θ̂t(ŵ∗
jj,t(ŵ))) and experience a change in the value of

[Ĥ(ŵ∗
jj,t(ŵ))− Ĥt(ŵ)]. The last term accounts for the change in value that the worker experiences after an

on-the-job wage change. Given a bargained relative wage ŵ∗
b,t(ŵ), the firm’s and worker’s non-negative

gains from positive wage changes are defined as

∆+Ĥt(ŵ) := Ĥt(max{ŵ∗
b,t(ŵ), ŵ})− Ĥt(ŵ), ∆+ Ĵt(ŵ) := Ĵt(max{ŵ∗

b,t(ŵ), ŵ})− Ĵt(ŵ),

and the non-negative gains for wage decreases are similarly defined as

∆−Ĥt(ŵ) := Ĥt(min{ŵ∗
b,t(ŵ), ŵ})− Ĥt(ŵ), ∆− Ĵt(ŵ) := Ĵt(min{ŵ∗

b,t(ŵ), ŵ})− Ĵt(ŵ).
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Given the presence of renegotiation costs, renegotiations with positive and negative wage changes occur

at rate G+(∆+ Ĵt(ŵ)) and G+(∆+ Ĵt(ŵ)), respectively.

While the worker’s HJBVI in (2.2) characterizes the worker’s value function within the firm’s contin-

uation set, the following value-matching condition characterizes the worker’s value outside the firm’s

continuation set:

Ĥt(ŵ) = 0, ∀ŵ /∈ (Ŵ j∗
t )c; (2)

Equation (2.2) states that when the firm decides to lay off the worker, the normalized value becomes zero.

Finally, the worker’s optimal policies are characterized by the following conditions:

ŵ∗
jj,t(ŵ) = arg max

ŵjj
f (θ̂t(ŵjj))[Ĥt(ŵjj)− Ĥt(ŵ)], (3)

s∗t (ŵ) =

(
f (θ̂t(ŵ∗

jj,t(ŵ)))[Ĥt(ŵ∗
jj,t(ŵ))− Ĥt(ŵ)]

µ

)ϕ

, (4)

Ŵh∗
t =

{
ŵ : Ĥt(ŵ) > 0 or eŵ − ρ̂Ût > 0

}
. (5)

Equation (2.2) represents the submarket where the worker chooses to search for a new job and determines

the corresponding wage. Equation (2.2) defines the search intensity based on the change in value resulting

from on-the-job search. Lastly, Equation (2.2) characterizes the worker’s continuation set, which consists

of states where continuing in the match is either strictly better than quitting or a weakly dominating

strategy. First, the worker stays in the match whenever the corresponding value is positive. Staying in the

match is also a weakly dominating strategy if the flow relative wage is larger than the flow opportunity

cost of staying in the match.2 Note that the conditions characterizing the decision to quit can be described

in terms of the more familiar value-matching condition—which requires the continuity of the value

function in the entire domain—and the smooth-pasting condition—which characterizes the optimal

continuation set by requiring the differentiability of the value function in the subset of the domain where

the worker chooses whether to quit. That is, these conditions require that Ĥt(·) ∈ C1(Ŵ j∗
t )∩C(R), where

Cn(D) denotes the set of differentiable functions up to order n in the domain D.

2This condition is necessary to rule out trivial equilibria that arise because of an agent’s indifference when the other agent is
dissolving the match (e.g., when the worker and the firm choose to dissolve the match even though flow profits and flow wages
net of the flow opportunity cost are both positive). Our equilibrium refinement resolves such indifference in favor of staying in
the match. See Blanco et al. (2022b) for further details.
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Firm’s Optimality Conditions. Given the worker’s optimal continuation set Ŵh∗
t , the firm’s HJBVI is

given by

ρ̂ Ĵt(ŵ) = max

{
eat − eŵ − (γ̂ + πt)

∂ Ĵt(ŵ)

∂ŵ
+

σ2

2
∂2 Ĵt(ŵ)

∂ŵ2 −
(

δ + s∗t (ŵ) f (θ̂t(ŵ∗
jj,t(ŵ)))

)
Ĵt(ŵ) +

∂ Ĵt(ŵ)

∂t
(6)

+ β+
ˆ

max{∆+ Ĵt(ŵ)− ψ, 0}dG+(ψ) + β−
ˆ

max{∆− Ĵt(ŵ)− ψ, 0}dG−(ψ)︸ ︷︷ ︸
Change in value from positive and negative wage changes

, 0

}
, ∀ŵ ∈ Wh∗

t .

Whenever the worker chooses to stay in the match, the firm has the choice of whether to fire the worker.

Condition on staying in the match, the firm receives normalized flow profits eat − eŵ. Next, the firm’s

value can change either because of productivity shocks, an exogenous separation, or the worker being

poached by another firm. The firm’s value function is also affected by the arrival of positive and negative

wage changes, which are characterized by the last term in (2.2). As explained before, the firm’s value is

also characterized by the value-matching and smooth-pasting conditions Ĵt(·) ∈ C1(Ŵh∗
t ) ∩ C(R), with

the value-matching condition requiring that

Ĵt(ŵ) = 0, ∀ŵ /∈ (Ŵh∗
t )c, (7)

i.e., the firm’s value is zero outside the worker’s continuation set. Following a similar logic behind the

worker’s continuation set, the firm’s optimal continuation set includes all relative wages for which either

the firm’s value function or flow profits are positive:

Ŵ j∗
t =

{
ŵ : Ĵt(ŵ) > 0 or 1 − eŵ > 0

}
. (8)

Unemployed Worker’s Optimality Conditions. The unemployed worker’s choice of the search strategy

ŵ∗
u,t is characterized by the following Hamilton-Jacobi-Bellman (HJB) equation

ρ̂Ût = B̃ + f (θ̂t(ŵ∗
u,t))Ĥt(ŵ∗

u,t)︸ ︷︷ ︸
Change in value from finding a job

+
∂Ût

∂t
(9)

and the corresponding optimality condition

ŵ∗
u,t = arg max

ŵu
f (θ̂t(ŵu))Ĥt(ŵu). (10)
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This equation captures the trade-off faced by unemployed workers, considering the value of finding a job

quickly vs. finding a job that pays more.

Free Entry Condition. The expected benefit of posting a vacancy is determined by the product of the

vacancy-filling rate q(θ̂t(ŵ)) and the firm’s value of the match Ĵt(ŵ). We assume that there is free entry of

firms, which implies that expected profits net of the vacancy-posting cost K̃ must be non-positive:

K̃ − q(θ̂t(ŵ)) Ĵt(ŵ) ≥ 0, (11)

and θ̂t ≥ 0, with complementary slackness for all ŵ.

On-the-job Wage Renegotiation. When the worker and the firm mutually agree to renegotiate the

nominal wage, the newly renegotiated wage is characterized by the Nash bargaining solution:

ŵ∗
b,t(ŵ) = arg max

ŵb

(
Ĥt(ŵb)− Ĥt(ŵ)

)χ ( Ĵt(ŵb)− Ĵt(ŵ)
)1−χ , (12)

subject to Ĥt(ŵb) ≥ Ĥt(ŵ) and Ĵt(ŵb) ≥ Ĥt(ŵ).

Equilibrium Definition We are now ready to formally define a recursive equilibrium.

Definition 1. Given a sequence (at, pt), a recursive equilibrium consists of a set of value functions {Ût, Ĥt(ŵ), ĴT(ŵ)},

a market tightness-function θ̂t(ŵ), and policy functions {Ŵh∗
t , Ŵ j∗

t , w∗
u,t, w∗

jj,t(ŵ), s∗t (ŵ), w∗
b,t(ŵ)} such that:

1. Given Ût, ŵ∗
b,t(ŵ), Ĵt(ŵ) and Ŵ j∗

t , the worker’s value Ĥt(ŵ) satisfies (2.2) and (2.2) with policies {ŵ∗
jj,t(ŵ), s∗t (ŵ)}

and the continuation set Ŵh∗
t given by (2.2), (2.2) and (2.2).

2. Given the worker’s search strategy {s∗t (ŵ), ŵ∗
jj,t(ŵ)} and continuation set Ŵh∗

t , the firm’s value Ĵt(ŵ)

satisfies (2.2) and (2.2) with the continuation set Ŵ j∗
t given by (2.2).

2. Given Ĥt(ŵ) and θ̂t(ŵ), the value Ût satisfies (2.2) with the search policy {ŵ∗
u,t} given by (2.2).

3. Given Ĵt(ŵ), the market-tightness function θ̂t(ŵ) solves the free entry condition (2.2).

4. Given Ĵt(ŵ) and Ĥt(ŵ), ŵ∗
b,t(ŵ) solves the bargaining problem (2.2).

2.3 Equilibrium Policies

The proposed model includes three mechanisms for wage adjustment: (1) wage changes following

job separations into unemployment, (2) wage renegotiation within a match, and (3) wage adjustment
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following job-to-job transitions. Next, we focus on the steady state and describe the economic mechanisms

underlying these observable implications. For the calibration behind these figures, see Table 1.

Wage Changes Following Job Separations. In our model, there are two types of job separations:

exogenous separations, occurring randomly at a rate δ dt, and endogenous separations, resulting from

optimal decisions made by workers and firms. We explain the nature of endogenous separations with the

help of Figure 1a, which shows the value functions of workers and firms as a function of the relative wage

ŵ (the two solid lines) and the continuation region of the match Ŵ j∗ ∩ Ŵh∗ = (ŵ−, ŵ+) (the shaded area).

At the beginning of the match, the worker’s relative wage is given by ŵ∗
u, which then fluctuates due to

productivity shocks. When the relative wage decreases below the threshold ŵ−, the worker chooses to

quit: The nominal wage and the continuation value of the match are too low relative to her productivity,

so the worker quits to find a new job that pays more accordingly to her productivity.3 Similarly, when

the relative wage is above ŵ+, the firm opts to lay off the worker. Consequently, following endogenous

separations, the worker’s relative wage resets back to ŵ∗
u.

FIGURE 1. WAGE RENEGOTIATION

(A) VALUE FUNCTIONS

ŵ− ŵ+ŵ∗
u ŵ∗hŵ∗j

0

ŵ

Ĥ(ŵ)

Ĵ(ŵ)

(B) UTILITY POSSIBILITY SET

Ĥ(ŵ∗j) Ĥ(ŵ∗h)

Ĵ(ŵ∗j)

Ĵ(ŵ∗h)

Efficiency
Redistribution
Ĵ(ŵ)1−αĤ(ŵ)α

Notes: Panel A shows the value function of the worker Ĥ(ŵ) and the firm Ĵ(ŵ), together with the boundaries of the continuation
region between ŵ− and ŵ+, and the entry wage form unemployment ŵu. Panel B plots the combination of Ĥ(ŵ) and the
firm Ĵ(ŵ) for all ŵ—see equation 2.3. The solid green line denotes these combinations for ŵ ∈ (ŵ∗j, ŵ∗h); i.e., relative wages
between the relative wage that maximizes the firm’s and worker’s value. The dashed green line denotes these combination for
ŵ /∈ (ŵ∗j, ŵ∗h). Using the free-entry condition, the solid purple line denotes the trade-off behind the unemployed worker’s
choice of ŵu.

3Above this threshold, the worker’s value first increases in the relative wage because the worker enjoys a higher utility from
the higher compensation. However, the value starts decreasing at even higher relative wages because of the higher layoff risk.
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To understand the determinants of the relative entry wage, observe that from the free-entry condition,

we have that θ̂(ŵ) = ( Ĵ(ŵ)/K̃)1/α for all θ̂ > 0. Since f (θ̂) = θ̂1−α, worker’s optimality implies that

ŵ∗
u = arg max

ŵu
f (θ̂t(ŵu))Ĥ(ŵu) = arg max

ŵu
Ĵ(ŵu)

1−α
α Ĥ(ŵu) = arg max

ŵu
Ĵ(ŵu)

1−αĤ(ŵu)
α. (13)

Thus, the optimal entry wage is determined by balancing the trade-off between a higher wage and a

higher job-finding probability and is set in a way that resembles the Nash Bargaining solution.4

On-the-job Wage Renegotiation. In our framework, the relative wage of a match serves two purposes.

First, it determines how the surplus is distributed between the firm and the worker. Second, it influences

the efficiency of the match by affecting the probability of job separations to unemployment or a new

match.

To formalize these two roles, we define the utility possibility set of the match UP given by

UP :=
{
(Ĥ, Ĵ) : ∃ ŵ ∈ (ŵ−, ŵ+) such that (Ĥ(ŵ), Ĵ(ŵ)) = (Ĥ, Ĵ)

}
and shown it in Figure 1b. The increasing part of the utility possibility set—the dotted green line—

represents the pair of worker and firm values evaluated at relative wages close to the separation thresholds

ŵ− and ŵ+. In these points of the state space, there exist other wages that can offer a Pareto improvement.

Thus, the worker and the firm mutually agree to renegotiate the wage if the renegotiation cost is small

enough. This property is illustrated in Figure 2a, which shows the bargaining hazard rate; i.e., the

probability of on-the-job wage renegotiation in a small period dt. However, there is a subset of the utility

possibility set—the solid green line in Figure 1b—where wage changes primarily impact the redistribution

of the surplus. In these points of the state space, there is no Pareto-improving bargaining outcome, and

therefore, the nominal wage remains unchanged. This requirement of mutual agreement to renegotiate

the wage leads to endogenous wage rigidity, in addition to the rigidity resulting from the renegotiation

cost.

Figure 2b depicts the optimal state-contingent wage changes ∆bw := ŵ∗
b(ŵ)− ŵ. To understand why

these are state-contingent, assume that χ = α. If the relative wage is close to any separation threshold,

then Ĥ(ŵ) = Ĵ(ŵ) ≈ 0. In this case, from equations (2.2) and (2.3), we have that ŵ∗
b(ŵ) ≈ ŵ∗

u; i.e., the

bargained wage approximates the entry wage, as the opportunity costs for both the worker and the firm

are equal to their respective values when unmatched. On the other hand, if the relative wage falls between

4This fact does not imply that Ĥ(ŵ∗
u) = αŜ(ŵ∗

u)—where Ŝ(ŵ) := Ĥ(ŵ) + Ĵ(ŵ)—since values are non-linear functions of
relative wages (see Blanco et al., 2022b).
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ŵ∗j = arg maxŵ Ĵ(ŵ) and ŵ∗h = arg maxŵ Ĥ(ŵ), then ∆bw = 0 since there are no Pareto-improving

outcomes in this range.

FIGURE 2. WAGE ADJUSTMENT WITHIN AND ACROSS JOBS

(A) HAZARD RATES

ŵ− ŵ+ŵ∗
u ŵ∗hŵ∗j

0

ŵ

Job-to-job transition
Wage renegotiation

(B) WAGE CHANGES

ŵ− ŵ+ŵ∗
u ŵ∗hŵ∗j

0

ŵ

ŵ∗
jj(ŵ)− ŵ

ŵ∗
b (ŵ)− ŵ

Notes: Panel A plots the hazard rate for job-to-job transitions (solid blue line) and on-the-job wage renegotiation (solid orange
line). Panel B shows the target wage the employed worker is searching for (relative to the current wage) and the outcome of the
wage renegotiation process (relative to the current wage).

Wage Adjustment Following Job-to-job Transitions. The worker’s on-the-job search policy consists of

a target wage ŵ∗
jj(ŵ) and a job-to-job hazard rate given by s∗(ŵ) f (ŵ∗

jj(ŵ)). The target wage is determined

by equation (2.2), which is similar to equation (2.2) for the entry wage but with a higher opportunity cost

for the worker. Since the opportunity cost depends on the current relative wage, so does the target wage

and the wage adjustment following a job-to-job transition. This implies that wage increases follow job

switches for sufficiently low relative wages—i.e., the model features a job ladder—and wage decreases

for sufficiently high relative wages. To see this, assume σ = β− = β+ = 0. We can define the sequence of

relative wages following the k-th job-to-job transition as ŵk = ŵ∗
jj(ŵ

k−1) with ŵ0 = ŵ∗
u. Then, the wage

change following the k-th transition is ∆jjwk = ŵk − ŵk−1 > 0 for a low relative wage ŵk−1. Moreover, the

hazard rate decreases whenever the current relative wage is closer to ŵ∗h, which represents the relative

wage that maximizes the worker’s value. This happens because the marginal gain from on-the-job search

becomes smaller, and search is costly.

It is worth noting that the interaction between limited commitment and on-the-job search leads to

wage decreases as the optimal choice for the worker following a job-to-job transition. Consider a situation

where a worker experiences a sufficiently negative productivity shock. Due to wage stickiness, the wage
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does not reflect the worker’s lower productivity, giving the firm an incentive to lay off the worker. To

avoid unemployment, the worker searches for a new wage that pays a lower wage than the current

match. Consequently, the model can generate job-to-job transitions due to “unsatisfactory pay” (relative

wages below ŵ∗h) or “fear of losing the job” (relative wages above ŵ∗h), two phenomena that have been

empirically documented by Fujita (2010).

3 Model Application and Parametrization

We now proceed to analyze the quantitative predictions of the model. We first describe the “want

operator”—i.e., the set of facts we want the model helps us understand. Section 3.1 presents the labor

market dynamics around the Argentina 2001 crisis, culminating in a significant inflation increase. In

Section 3.2, we then describe the data and the moments we use to discipline the model and the estimation

procedure.

3.1 Application: Argentina 2001 Crisis

Our study aims to examine the impact of inflation on labor market dynamics. We believe the 2001

Argentina crisis is an ideal case study due to the significant inflation surge experienced during a recession.

This section provides an overview of the crisis and the associated labor market dynamics. For a more

comprehensive description of this event and the data sources used to construct labor market variables, we

refer readers to Blanco et al. (2022c). We highlight that aggregate dynamics during this episode resemble

cross-country aggregate dynamics during large devaluations.

During the analyzed period, Argentina’s macroeconomic environment was characterized by a history

of high and volatile inflation. In an attempt to address this issue, the country implemented a currency

board regime in April 1991, pegging its currency to the U.S. dollar. This policy successfully brought

inflation under control, providing nominal stability and fostering rapid economic growth. However, the

economy encountered significant challenges in 1998 when it entered a recession following the Russian

crisis, which led to reduced capital flows and increased sovereign spreads. Additionally, the devaluation

of the Brazilian currency (Argentina’s main trading partner), the global appreciation of the U.S. dollar,

and the substantial decline in commodity prices further compounded the economic difficulties. As a

result, the fiscal deficit deteriorated, public debt increased, and an austerity plan was implemented,

exacerbating the recession. Consequently, the country experienced significant capital flight, a run on the

local banking system, and ultimately defaulted on its external debt, leading to a freeze on deposits and

the abandonment of the exchange-rate peg.
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FIGURE 3. LABOR MARKET DYNAMICS OVER THE 2001 ARGENTINA CRISIS
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Notes: The figure shows aggregate time series between January 1997 and December 2006. Panel A plots a measure of aggregate
TFP and the year-over-year inflation rate. The TFP measure is constructed as output per worker (the ratio between real GDP and
total employment from the national household survey EPH); the series is normalized to its value in the first semester of 2001 and
expressed in log points ×100. The shaded area denotes the recession period. Panel B shows the average real labor income from
SIPA. Panel C plots the unemployment rate from EPH. Panels D, E, and F show the job-separation rate to non-employment, the
job-finding rate, and the job-to-job rate, which are constructed by combining data from EPH and SIPA, respectively. We define a
job-to-job transition as a worker’s change of employers with an intervening unemployment spell of at most one month.
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Figure 3 presents the aggregate time series surrounding this episode. Panel 3a illustrates the evolution

of aggregate inflation and output per worker, which serves as a simple proxy for total factor productivity

(TFP). To analyze the labor market response to the January 2002 inflation surge, we utilize a combination

of microdata from the administrative social security records known as the “Sistema Integrado Previsional

Argentino” (SIPA) and the national household survey referred to as the “Encuesta Permanente de Hogares”

(EPH). Panels 3b to 3f depict the changes in average real labor income, the unemployment rate, the job-

separation rate, the job-finding rate, and the job-to-job rate over time.

The January 2002 devaluation allows for the analysis of the labor market response to a policy change

that generated a large and unexpected increase in inflation. Prior to the devaluation, Argentina experi-

enced a period of low and stable inflation alongside declining TFP. However, following the devaluation,

year-over-year inflation surged to approximately 35%, while aggregate TFP further declined by an ad-

ditional 10 percentage points and remained below the 2001 level for an extended period. Interestingly,

average real labor income remained relatively stable in the five years leading up to the devaluation,

despite a significant cumulative decrease in TFP. However, after the devaluation, there was a sharp

decline of 25% in average labor income, which can be attributed to the delayed response in the frequency

of job wage changes (see Blanco et al., 2022a). Concurrently, the unemployment rate, which had been

steadily increasing prior to the devaluation, experienced a persistent and rapid decline, aligning with the

increase in inflation and the drop in real labor income. This labor market recovery is evident across all

labor flows. The spike in the job-separation rate observed the year before the inflation surge was quickly

reversed in the months that followed. Furthermore, the downward trends in job-finding and job-to-job

separations halted with the increase in inflation and gradually improved thereafter.

These facts surrounding the inflation surge present a challenge to existing models of frictional labor

markets. Although these models would have no problems replicating the labor market dynamics before

the increase in inflation, they would face difficulty in explaining, for example, the rapid and significant

decline in the job-separation rate into unemployment amidst declining TFP. As we show below, through

the lens of our model, these facts are not a puzzle; the key is to have a realistic model for the adjustment

of nominal wages and endogenous separations.

3.2 Calibration Strategy

A period in the model corresponds to a month. We set the discount factor ρ to an annualized value of

4%. Given the lack of data on vacancies in Argentina, we set the elasticity of the matching function with

respect to effective units of searchers α to 0.72 as in Shimer (2005b). We assume a parametric distribution
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for the renegotiation cost given by G−(ψ) = G+(ψ) = 1. Table 1 reports the model parameters together

with their respective targets.

TABLE 1. PARAMETER VALUES AND IMPLICIT TARGETS IN SMM

Parameter Description Value Target

Panel A: External Calibration

ρ Discount factor 0.04/12 4% annual real interest rate
α Elasticity matching function 0.72 Shimer (2005b)

Panel B: Interal Calibration

K̃ Vacancy posting cost 31.00 Job-finding rate
B̃ Flow value of unemployment 0.19 Avg. income unemployed / employed
γ Drift worker’s productivity shock 0.00 Avg. wage change during EUE transitions
σ St. de. worker’s productivity shock 0.05 St. dev. wage change during EUE transitions
µ Level of search cost 3.26 Job-to-job transition rate
ϕ Elasticity of search cost 0.99 Distribution wage changes during EE transitions
χ Worker’s bargaining power 0.33 Distribution wage changes on-the-job
β+ Arrival free positive wage changes 0.51 Freq. positive wage changes on-the-job
β− Arrival free negative wage changes 0.10 Freq. negative wage changes on-the-job

Notes: The table presents the parameter values assigned to the model.

We estimate the remaining 9 parameters to match moments of the wage-change distribution and

labor flows in Argentina from 1996 to 2000, which captures a low inflation environment. For this,

we use the steady-state solution of our model to compute the same statistics in the model as in the

data. We then chose the parameter set P = {K̃, B̃, γ, σ, µ, ϕ, χ, β+, β−} that minimizes the objective

(mm(P)− md)
′W(mm(P)− md), where mm and md are vectors of model-simulated moments and data

moments, respectively, and W is a diagonal matrix. Tables 2 and 3 describe the empirical targets used to

discipline the parameters in our model. Next, we describe these data and the steps followed to compute

the moments in md.

Moment construction in the data. We use administrative employer-employee-matched monthly data

from Argentina’s national social security system. The main variable we use is workers’ total pre-tax

nominal monthly compensation in the formal sector, which includes all forms of compensation (i.e., base

wage, bonuses, etc.). From now on, we refer to this variable as the worker’s nominal wage. For more

details about the data, see Blanco et al. (2022c).

The distribution of wage changes is critical to discipline the response of aggregate wages and employ-

ment to aggregate shocks. For this reason, we apply several filters to render the data compatible with the
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model. First, we perform the following sample selection procedure. We restrict our sample to workers

aged between 25 and 55 in the private sector to avoid issues related to early retirement or non-market

wage determination. We additionally eliminate workers earning less than half of the monthly minimum

wage and winsorize nominal wages at the top 99.999th percentile.

Second, in the spirit of Barattieri et al. (2014), we apply a filter to nominal wages to recover workers’

“regular” wages. Although our administrative data may contain negligible measurement error, our

model abstracts from many sources of transitory deviations from a modal or permanent wage. In the

data, transitory deviations can arise from two main sources. First, small transitory deviations around a

permanent wage can result from the intensive margin of labor supply or worker’s commission. Second,

significant transitory deviations can result from seasonal factors, such as end-of-the-year bonuses, vacation

payments, or the payment of the 13th salary. Given that our model abstracts from many of these features,

we eliminate them from the data by applying the following filter.

We construct a measure of the regular wage following the Break Test methodology developed in

Blanco et al. (2022b). In a nutshell, the logic behind this methodology is to split a nominal wage series into

two continuous subsamples and perform a statistical test of whether those subsamples were drawn from

the same distribution using the Kolmogorov-Smirnov statistic. The methodology will identify changes in

the regular wage series whenever differences between observed wage series before and after a potential

break are sufficiently large.5 To illustrate the importance of removing transitory wage changes, using the

same data Blanco et al. (2022b) show that the monthly frequency of wage changes based on the unfiltered

data is 70%, while the frequency of regular wage changes is 13%, which is much aligned with the estimates

in Barattieri et al. (2014) and Grigsby et al. (2021).

Table 2 describes the wage change distribution arising from on-the-job bargaining (columns denoted

by “∆w Bargaining”), the wage change distribution from job-to-job transitions (“∆w EE”), and the wage

change distribution following a job-separation into unemployment (“∆w EUE”). For each transition, we

remove outliers by dropping observations below the 1% and above the 99% percentiles. In addition,

our model abstracts from wage differences arising from firm heterogeneity; in the model, productivity

differences are only driven by workers’ idiosyncratic shocks. Therefore, we filter the data on wage

changes across firms to remove the proportion of wage changes arising from firms’ fixed heterogeneity.

The contribution of firm heterogeneity to wage dispersion has been previously documented by Card et al.

(2016); Schmutte (2015); Jinkins and Morin (2018), among others. Based on the methodology developed by

5This methodology relies on one parameter K, which defines the critical values for the test to reject the null hypothesis of no
break in the series. Since there are no standardized critical values, Blanco et al. (2022b) estimates K combining a cross-validation
exercise with a statistical model of wage changes, in which wages are negotiated whenever the relative wage hits a lower or
upper (S,s) band—a model observationally close to the one presented in Section 2.
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TABLE 2. TARGETED MOMENTS: WAGE-CHANGE DISTRIBUTIONS

∆w Bargaining ∆w EE ∆w EUE

Data Model Data Model Data Model
Mean 0.01 -0.00 0.04 0.09 -0.04 -0.06
Standard deviation 0.13 0.07 0.19 0.16 0.30 0.18
Kurtosis 3.73 5.32 4.53 2.99 3.34 2.80

10th Percentile -0.15 -0.11 -0.17 -0.19 -0.40 -0.28
25th Percentile -0.07 -0.03 -0.05 0.02 -0.20 -0.21
50th Percentile 0.00 0.02 0.01 0.13 -0.02 -0.07
75th Percentile 0.08 0.04 0.12 0.20 0.12 0.06
90th Percentile 0.16 0.06 0.29 0.25 0.31 0.18

Notes: The table presents selected moments of the wage-change distribution in Argentina between 1996 and 2000 used in the
estimation. The first two columns report moments of wage changes within the same job in the data and the model, respectively.
The following two columns report moments of wage changes from job-to-job transitions in the data and the model, respectively.
The last two columns report moments of wage changes following job separations into unemployment in the data and the model,
respectively.

Abowd et al. (1999), the main finding is that firm fixed effects account for approximately 45% of the wage

level dispersion and 17% of the dispersion of wage growth of workers that switch jobs. Thus, we re-scale

the distribution of wage changes across jobs by 0.6 to bridge the gap between the model and the data.

Notice that this rescaling does not affect the higher-order moments of the wage-change distributions (i.e.,

skewness and kurtosis) and only affects the dispersion of the wage changes. As expected, wage growth

following EE transitions is positive, while average growth during EUE transitions is negative. In addition,

wage changes on-the-job are the least dispersed, followed by the dispersion of EE wage changes and EUE

wage changes, which exhibits the largest amount of dispersion.

Table 3 reports the remaining moments used to calibrate the model. The computation of the monthly

E-to-U separation and job-to-job finding rates is standard. The separation rate is slightly higher than the

average separation rate of 0.034 in the U.S. (see Shimer, 2005b), and the job-to-job transition rate is half

than that in the U.S. (see Nagypál, 2007; Fujita et al., 2020). Two issues arise when computing the remaining

U-to-E transition rate: (i) the administrative data do not contain information on the unemployed, and

(ii) in the household survey we do not observe whether an unemployed worker searches for jobs in the

formal or informal sector. We construct the monthly U-to-E transition rate as the product between the

monthly entry rate in the formal sector UEt/Et−1 and the aggregate employment-to-unemployment ratio

Et−1/Ut−1. Next, using data from the national household survey, we measure the replacement ratio by

computing the ratio of a worker’s income during unemployment and employment and taking the average
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across workers transitioning from unemployment to formal employment and vice versa. Finally, we

compute the frequency of wage changes as the share of non-zero regular wage changes within the same

job.

TABLE 3. ADDITIONAL TARGETED MOMENTS

Moment Data Model
U-to-E transition rate 0.280 0.278
Job-to-job transition rate 0.013 0.013
E-to-U transition rate 0.039 0.036
Avg. replacement ratio 0.203 0.208
Freq. of wage changes 0.086 0.067

Notes: The table presents Argentina’s average labor market flows, replacement ratio, and frequency of on-the-job wage changes
between 1996 and 2000.

Internal Calibration. Next, we discuss how each parameter in P is informed by specific sets of moments,

despite being jointly calibrated. First, the value of home production B̃ is directly identified by the

replacement ratio. Given the value of home production, the cost of posting vacancies determines the

job-finding rate. We set the parameters of the idiosyncratic productivity process γ and σ to match the

distribution of wage changes after a EUE transition, particularly the mean and the standard deviation. To

understand this choice, assume there is no on-the-job search and no on-the-job wage renegotiation. Then,

following a separation, wage changes are informative of the worker’s cumulative productivity shocks

experienced between the starting date of two consecutive jobs. Thus, as shown by Blanco et al. (2022b), γ

and σ are proportional to the average and the variance of wage changes across jobs.6

Once these parameters are determined, the remaining parameters are identified by the frequency of

wage changes, average E-to-E and E-to-U transition rates, and moments of the wage change distribution

within jobs and following an E-to-E transition. The parameters µ and ϕ of the search cost function are

identified by the average job-to-job transition rate and the kurtosis of the distribution of wage changes

across jobs. Intuitively, µ determines the level of the job-to-job hazard rate, while ϕ determines its slope.

With a given slope, a lower search cost leads to a higher job-to-job transition rate. The slope of the hazard

rate is governed by ϕ. For a given change in the expected benefit of on-the-job search, a higher value

of ϕ implies a greater change in search intensity by workers. When ϕ = 0, search effort becomes state

independent, and the kurtosis of the wage change distribution after E-to-E transitions should be close

6The proportionality factor is given by the average time elapsed between the starting date of two consecutive jobs during a
EUE transition. This moment is mechanically matched when calibrating the average separation and job-finding rates.
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to 6 (i.e., similar to that of the Laplace distribution). As ϕ → ∞, workers make E-to-E transitions almost

instantaneously, resulting in a kurtosis of the wage change distribution of 1.

Finally, the hazard rates of on-the-job wage renegotiations and the worker’s bargaining power,

(β−, β+, χ), are determined by the probability of wage increases and decreases on-the-job, along with the

average wage change. It is worth noting that although the calibrated hazard rates of wage increases and

decreases are set at 0.5 and 0.1, respectively, the actual probability of wage adjustments is significantly

lower due to the model’s non-negligible degree of endogenous wage rigidity. This is because the relative

wage ŵ for many matches falls between ŵ∗j and ŵ∗h, a region where wage renegotiations mainly impact

the redistribution of match surplus rather than its efficiency. As a consequence of the large asymmetries

between the hazard rates for positive and negative wage changes, the model predicts that layoffs occur

much more frequently than quits, with layoffs accounting for 34% of total separations while quits comprise

only 4.5%. The much higher prevalence of layoffs is consistent with the empirical evidence for the US (see

Elsby et al., 2010).

As Tables 2 and 3 show, the model can match the targeted moments well.

4 Quantitative Analysis

In this section, we aim to examine the quantitative predictions of our model regarding the impact of

inflation on labor market dynamics. To achieve this, we simulate a series of aggregate shocks that closely

mimic the 2001 Argentine recession. Our analysis considers two distinct scenarios.

In the first scenario, we assume that starting from 1998, the economy encounters a sequence of adverse

productivity shocks. These shocks are initially at a rate of 1.25% per year and intensify to 3% per year

at the beginning of 2002. This heightened level of shocks persists until early 2003, at which point the

aggregate productivity reverts to its steady-state value (Figure 4a), with a half-life of 14 months.

The second scenario replicates the unexpected sequence of productivity shocks experienced in 1998,

similar to the first scenario. However, in addition to these shocks, agents in the economy also face an

unanticipated shock to inflation in early 2002. This shock increases monthly inflation linearly from 0%

to a maximum of 10% over a period of four months, mirroring the actual data. Subsequently, inflation

returns to 0% with a half-life of 2 months (dashed line in Figure 4b). By investigating these two scenarios,

we can evaluate the differential effects of inflation when compared to the isolated productivity shocks.

Figure 4 illustrates the dynamic changes in labor flows triggered by the aggregate shocks. In the first

scenario, the lower aggregate productivity lowers firms’ flow profits and values. Consequently, the lower

firm value induces a rise in the job-separation rate (4d), primarily driven by an increase in the layoff rate
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FIGURE 4. LABOR FLOWS DYNAMICS AFTER AGGREGATE SHOCKS
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(see below). Additionally, the lower firm value also reduces the job-finding rate of the unemployed (4e).

These persistent flow adjustments elevate the unemployment rate beyond the steady state level by more

than 2 percentage points. Furthermore, the job-to-job transition declines both directly due to reduced

vacancy postings by firms and indirectly due to diminished worker incentives for on-the-job search (4f).

In the second scenario, the unanticipated inflation shock exerts a substantial stabilizing effect on
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the unemployment rate, initiating a recovery despite the ongoing decline in aggregate productivity.

This outcome can be attributed to a significant decrease in the job-separation rate (the job-finding rate

experiences a transitory decline during the high-inflation period, as we explain below). Additionally, the

inflation shock reduces real wages for employed workers, prompting a notable increase in their on-the-job

search intensity.

To explain the dynamics of these flows, it is crucial to analyze the wage dynamics. Figure 5 shows

the dynamics of the average wage of bargained contracts ŵ∗
b , the average wage of new hires ŵ∗

jj, and

the average wage of unemployed workers ŵ∗
u. In response to the lower productivity, workers and firms

engage in downward wage renegotiations. The willingness of workers to accept wage cuts stems from

the productivity shock reducing the layoff threshold (ŵ+) (6b). Consequently, workers agree to lower

wages to avoid separations into unemployment. However, the decline in wages remains small relative to

the magnitude of the shock, and aggregate separations decrease nonetheless. In response to the shock,

both employed and unemployed workers actively search for jobs offering lower wages relative to the

steady state, thereby preventing a further decline in the job-finding rate.

In light of the inflation shocks, workers try to secure real wage increases. A portion of employed

workers successfully renegotiate for higher real wages (Figure 5a) and, due to increased on-the-job search

intensity, firms are inclined to grant such increases to retain their workforce and deter employees from

seeking alternative jobs. Another fraction of employed workers secures new jobs with higher real wages

before renegotiating with their current employers (Figure 5b). Simultaneously, the higher inflation rate

prompts unemployed workers to search for jobs offering a higher real wage, consequently reducing their

effective job-finding rate.

FIGURE 5. WAGE DYNAMICS AFTER AGGREGATE SHOCKS
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Avg. ŵjj (C) ŵ∗
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Finally, we delve into the determinants of the job-separation rate, which, in our model, serves as the

primary driver of the unemployment rate. Specifically, we focus on the dynamics of its endogenous

components: quits and layoffs. Figure 6 depicts the quits and layoff thresholds ŵ− and ŵ+ alongside the
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evolution of the distribution of the real wage-to-productivity ratio ŵ in each scenario. In the first scenario,

the lower aggregate productivty leads to an increase in the quits threshold since the constant real value of

home production becomes more attractive. Simultaneously, the layoff threshold decreases, indicating

firms’ reduced willingness to sustain matches with high ŵ. However, as depicted in Figure 6c, the impact

of the first effect on the quit rate remains small, given the already low steady-state quit rate. Conversely,

the second effect is more significant, emerging as the primary driver of the increased job-separation rate.

This is primarily due to the persistent and significant concentration of workers near the declining layoff

threshold since the beginning of the shock.

In contrast, the second scenario demonstrates that the inflation shock marginally increases the quits

threshold while considerably reducing the layoff threshold. Furthermore, the inflation shock diminishes

the real wage-to-productivity ratio for employed workers, shifting the distribution to the left and reducing

the concentration of workers near the layoff threshold. Consequently, the job-separation rate experiences

a significant decrease, enabling the unemployment rate to begin its recovery despite the ongoing decline

in aggregate productivity.

5 Conclusion

This paper contributes to the analysis of wage rigidity and its implications for labor market dynamics. By

developing a frictional labor market model with directed and on-the-job search, incorporating idiosyn-

cratic worker productivity shocks, two-sided limited commitment, and wage rigidities, we provide a

comprehensive framework to understand wage adjustments within and across jobs. Our model captures

the state-dependent nature of wage changes, where the current wage determines the probability and

magnitude of future adjustments. Grounding our analysis in microdata on wage adjustment, we calibrate

the model using administrative employer-employee-match monthly labor income data from Argentina, en-

abling us to accurately examine the dynamics of real wages and employment. Furthermore, we highlight

the role of inflation in alleviating the negative consequences of wage rigidity, as demonstrated through

empirical evidence and supported by our model’s ability to replicate the dynamics observed during

the 2001 Argentinean recession and the subsequent policy changes. Overall, this research enhances our

understanding of the complex relationship between wage rigidity, labor market frictions, and aggregate

fluctuations, providing valuable insights for the design of effective fiscal, monetary, and social insurance

policies.
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FIGURE 6. SEPARATIONS DYNAMICS AFTER AGGREGATE SHOCKS
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ŵ

1998m1
2002m1
2002m11
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A Numerical Appendix

A.1 Solving the Steady State

Summary of Equations: Define the transformed drift γ̂ := γ + σ2 and the transformed discount factor ρ̂ := ρ − γ − σ2/2.

The steady-state equilibrium satisfies the following equations:

1. Free entry condition for θ̂(ŵ):

K̃ = θ̂(ŵ)−α Ĵ(ŵ).

2. Normalized value of unemployment:

ρ̂Û = B̃ + θ̂(ŵ∗
u)

1−α Ĥ(ŵ∗
u),

where ŵ∗
u = arg maxŵu

θ̂(ŵu)1−α Ĥ(ŵu).

3. Normalized value function of an employed worker:

ρ̂Ĥ(ŵ) = max
{

0 , eŵ − ρ̂Û − γ̂
∂Ĥ(ŵ)

∂ŵ
+

σ2

2
∂2Ĥ(ŵ)

∂ŵ2 − δĤ(ŵ)

+ β+∆+Ĥ(ŵ)G+(∆+ Ĵ(ŵ)) + β−∆−Ĥ(ŵ)G−(∆− Ĵ(ŵ))

+ s∗(ŵ) f (θ̂(ŵ∗
jj(ŵ)))[Ĥ(ŵ∗

jj(ŵ))− Ĥ(ŵ)]− µ (s∗(ŵ))1+1/ϕ

1 + 1/ϕ

}
, ∀ŵ ∈ Ŵ j∗

and Ĥ(ŵ) = 0 ∀ /∈ Ŵ j∗, where s∗(ŵ) =

(
f (θ̂(ŵ∗

jj(ŵ)))[Ĥ(ŵ∗
jj(ŵ))−Ĥ(ŵ)]

µ

)ϕ

and ŵ∗
jj(ŵ) = arg maxwjj

f (θ̂(ŵjj))[Ĥ(ŵjj)−
Ĥ(ŵ)].

4. Normalized value function of a filled vacancy:

ρ̂ Ĵ(ŵ) = max
{

0 , 1 − eŵ − γ̂
∂ Ĵ(ŵ)

∂ŵ
+

σ2

2
∂2 Ĵ(ŵ)

∂ŵ2 − δ Ĵ(ŵ)− s∗(ŵ) f (θ̂(ŵ∗
jj(ŵ))) Ĵ(ŵ)

+ β+
ˆ

max{∆+ Ĵ(ŵ)− ψ, 0}dG+(ψ) + β−
ˆ

max{∆− Ĵ(ŵ)− ψ, 0}dG−(ψ)
}

, ∀ŵ ∈ Ŵh∗

and Ĵ(ŵ) = 0 ∀ŵ /∈ Ŵh∗.

5. Optimal bargaining: ∆+ Ĵ(ŵ) = Ĵ(w+ − z)− Ĵ(w − z), ∆− Ĵ(ŵ) = Ĵ(w− − z)− Ĵ(w − z),∆+Ĥ(ŵ) = Ĥ(w+ − z)− Ĥ(w −
z), ∆−Ĥ(ŵ) = Ĥ(w− − z)− Ĥ(w − z) and

ŵ∗
+(ŵ) = arg max

ŵ+≥ŵ

(
Ĵ(ŵ+)− Ĵ(ŵ)

)1−χ (Ĥ(ŵ+)− Ĥ(ŵ)
)χ

ŵ∗
−(ŵ) = arg max

ŵ−≤ŵ

(
Ĵ(ŵ−)− Ĵ(ŵ)

)1−χ (Ĥ(ŵ−)− Ĥ(ŵ)
)χ .

6. Optimal continuation regions:

Ŵh∗ = {ŵ : Ĥ(ŵ) > 0 or eŵ > ρ̂Û},

Ŵ j∗ = {ŵ : Ĵ(ŵ) > 0 or 1 − eŵ > 0}.
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Solution Algorithm:

1. Define equidistant grids Ĥ = {ŵ1, . . . , ŵNw}, where the ∆w ≡ ŵi − ŵi−1.

2. Guess Û0, Ĵ0(ŵ) and Ĥ0(ŵ). Proposal: as a starting point, choose the solution of the baseline model without on-the-job

search and fixed wages, which has a closed-form solution.

3. Suppose we are in iteration n with guess Ûn, Ĵn(ŵ) and Ĥn(ŵ):

3.1 Compute the continuation regions Ŵhn = {ŵ : Ĥn(ŵ) > 0 or eŵ > ρ̂Ûn} and Ŵ jn = {ŵ : Ĵn(ŵ) > 0 or 1− eŵ > 0}.

3.2 From the free-entry condition solve for θ̂n(ŵi) and f (θ̂n(ŵi)) for each ŵi in the grid.

3.3 Solve the search problem by computing s∗n(ŵi) =

(
f (θ̂n(ŵ∗n

jj (ŵi)))[Ĥn(ŵ∗n
jj (ŵi))−Ĥn(ŵi)]

µ

)ϕ

and ŵ∗n
jj (ŵi) = arg maxwjj

f (θ̂n(ŵjj))[Ĥn(ŵjj) − Ĥn(ŵi)] for each ŵi in the grid. Define the Nw × Nw transition matrix based on optimal

search strategy when employed as

An
jj l,m

=

1, if ŵi = ŵl and ŵ∗
jj(ŵi) = ŵm

0, otherwise.

3.4 Solve the bargaining problem by computing

ŵ∗n
b (ŵi) = arg max

ŵb

(
Ĵn(ŵb)− Ĵn(ŵi)

)1−χ (Ĥn(ŵb)− Ĥn(ŵi)
)χ

for each ŵi in the grid. Define the Nw × Nw transition matrix based on the bargaining solution as

An
b l,m =

1, if ŵi = ŵl and ŵ∗n
b (ŵi) = ŵm

0, otherwise.

3.5 Update worker’s value by solving a linear complementarity problem (LCP). The discretized version of their HJBVI

equation is given by

ρ̂Ĥ(ŵi) = max
{

0 , eŵi − ρ̂Û − γ̂
∂Ĥ(ŵi)

∂ŵ
+

σ2

2
∂2Ĥ(ŵi)

∂ŵ2 − δĤ(ŵi)

+ β+∆+Ĥ(ŵi)G+(∆+ Ĵ(ŵi)) + β−∆−Ĥ(ŵi)G−(∆− Ĵ(ŵi))

+ s∗(ŵi) f (θ̂(ŵ∗
jj(ŵi)))[Ĥ(ŵ∗

jj(ŵi))− Ĥ(ŵi)]−
µ (s∗(ŵi))

1+1/ϕ

1 + 1/ϕ

}
, ∀ŵi ∈ Ŵ jn

and Ĥ(ŵi) = 0 ∀ŵi /∈ Ŵ jn.

The derivatives are discretized in the following way: for a given function F , define forward and backward first

differences and second differences as

F F
ŵ(ŵi) ≈

F (ŵi+1)−F (ŵi)

∆w

FB
ŵ(ŵi) ≈

F (ŵi)−F (ŵi−1)

∆w

Fŵŵ(ŵi) ≈
F (ŵi+1)− 2F (ŵi) +F (ŵi−1)

(∆w)2 .

A2



The HJBVI of the worker in matrix notation is given by

min

{
Ĥn+1 − Ĥn

∆t
+ ρ̂Ĥn+1 − 1{ŵ ∈ Ŵ jn}

(
eŵ − ρ̂Û − µ (s∗n)1+1/ϕ

1 + 1/ϕ
+Az Ĥn+1 − δĤn+1

+ diag
(

β+G+(∆+ Ĵn)1{ŵ∗n
b > ŵ}+ β−G−(∆− Ĵn)1{ŵ∗n

b (ŵ) < ŵ}
) [

An
b Ĥn − Ĥn

]
+ diag(s∗n)

[
An

jj

(
diag( f (θn))Ĥn+1

)
− diag

(
Ajj f (θn)

)
Ĥn+1

] )
, Ĥn+1

}
= 0 (A.1)

Here, diag(x) is a square matrix with vector x in its diagonal. Also, Az is the discretized transition probability

matrix for the process dŵ. To construct this matrix we follow an upwind scheme. Thus, row i is given by

Az [i,]Ĥ =

(
γ̂+

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵi−1) +

(
− γ̂+

∆w
+

γ̂−

∆w
− σ2

(∆w)2

)
Ĥ(ŵi) +

(
− γ̂−

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵi+1)

where x+ ≡ max{x, 0} and x− ≡ min{x, 0}. At the lower boundary, we have the reflecting barrier ĤB
ŵ(ŵ1) ≈

Ĥ(ŵ1)−Ĥ(ŵ0)
∆w

= 0 and hence Ĥ(ŵ0) = Ĥ(ŵ1). Thus,

Az [1,]Ĥ =

(
γ̂+

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵ1) +

(
− γ̂+

∆w
+

γ̂−

∆w
− σ2

(∆w)2

)
Ĥ(ŵ1) +

(
− γ̂−

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵ2)

Similarly, at the upper boundary, we have the reflecting barrier ĤF
ŵ(ŵNw ) ≈ Ĥ(ŵNw+1)−Ĥ(ŵNw )

∆w
= 0 and hence

Ĥ(ŵNw ) = Ĥ(ŵNw+1). Thus,

Az [Nw ,]Ĥ =

(
γ̂+

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵNw−1) +

(
− γ̂+

∆w
+

γ̂−

∆w
− σ2

(∆w)2

)
Ĥ(ŵNw ) +

(
− γ̂−

∆w
+

σ2

2(∆w)2

)
Ĥ(ŵNw ).

To summarize, let aL ≡
(

γ̂+

∆w
+ σ2

2(∆w)2

)
, aM ≡

(
− γ̂+

∆w
+ γ̂−

∆w
− σ2

(∆w)2

)
and aH ≡

(
− γ̂−

∆w
+ σ2

2(∆w)2

)
. Then, we can

write the Nw × Nw matrix as

Az =



aL + aM aH 0 0 0 . . . 0 0 0

aL aM aH 0 0 . . . 0 0 0

0 aL aM aH 0 . . . 0 0 0
...

...
...

...
...

. . . 0 0 0
...

...
...

...
...

. . . aL aM aH

0 . . . . . . . . . . . . . . . 0 aL aM + aH


Next, (3e) can be rewritten as:

(
Ĥn+1

)T
(

Ĥn+1 − Ĥn1{ŵ ∈ Ŵ jn}
∆t

+ ρ̂Ĥn+1 − 1{ŵ ∈ Ŵ jn}
(

eŵ − ρ̂Û − µ (s∗n)1+1/ϕ

1 + 1/ϕ
+An

W Ĥn+1
))

= 0

Ĥn+1 ≥ 0

Ĥn+1 − Ĥn1{ŵ ∈ Ŵ jn}
∆t

+ ρ̂Ĥn+1 − 1{ŵ ∈ Ŵ jn}
(

eŵ − ρ̂Û − µ (s∗n)1+1/ϕ

1 + 1/ϕ
+An

W Ĥn+1
)
≥ 0,
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where

An
W := −diag(δ) +Az + diag(s∗n)

[
An

jjdiag( f (θn))− diag
(
An

jj f (θn)
)]

+ diag
(

β+G+(∆+ Ĵn)1{ŵ∗n
b > ŵ}+ β−G−(∆− Ĵn)1{ŵ∗n

b < ŵ}
)
[An

b − I] .

This is a LCP with ζ = Ĥn+1, M =
(

ρ̂ + 1
∆t

)
I − 1{ŵ ∈ Ŵ jn}An

W , q = −1{ŵ ∈ Ŵ jn}
(
eŵ − ρ̂Û − µ(s∗n)1+1/ϕ

1+1/ϕ + Ĥn

∆t
)

satisfying

ζT(Mζ + q) = 0

ζ ≥ 0

Mζ + q ≥ 0

Use an LCP solver to find Ĥn+1(ŵ) in the entire domain.

3.6 Update worker’s continuation region: Ŵhn+1 = {ŵ : Ĥn+1(ŵ) > 0 or eŵ > ρ̂Ûn}.

3.7 Solve the LCP of the firm. The HJBVI of the firm in matrix notation is given by

min

{
Ĵn+1 − Ĵn1{ŵ ∈ Ŵhn}

∆t
+ ρ̂ Ĵn+1 − 1{ŵ ∈ Ŵhn}

(
1 − eŵ +Az Ĵn+1 − δ Ĵn+1 − diag(s∗n)diag

(
An

jj f (θn)
)

Ĵn+1
)

+ diag
(

β+G+(∆+ Ĵn)1{ŵ∗n
b > ŵ}+ β−G−(∆− Ĵn)1{ŵ∗n

b < ŵ}
) [

Ab Ĵn − Ĵn
]

, Ĵn+1

}
= 0.

Solve the LCP problem with ζ = Ĵn+1, M =
(

ρ̂ + 1
∆t

)
I − 1{ŵ ∈ Ŵhn}An

j with An
j = −diag(δ) + Az −

diag(s∗n)diag
(
An

jj f (θn)
)
+ diag

(
β+G+(∆+ Ĵn)1{ŵ∗

b > ŵ}+ β−G−(∆− Ĵn)1{ŵ∗
b < ŵ}

)
[Ab − I], q = −1{ŵ ∈

Ŵh}
(
1 − eŵ + Ĵn

∆t
)
. Use a LCP solver to find Ĵn+1(ŵ) in the entire domain.

3.8 Update firm’s continuation region: Ŵ jn+1 = {ŵ : Ĵn+1(ŵ) > 0 or 1 − eŵ > 0}.

3.9 Compute the optimal search strategy when unemployed by finding

ŵ∗n+1
u = arg max

ŵu

θn(ŵu)
1−α Ĥn(ŵu)

3.10 Compute the new unemployment value from

Ûn+1 − Ûn

∆t
+ ρ̂Ûn+1 = B̃ + θn(ŵ∗n+1

u )1−α Ĥn(ŵ∗n+1
u ).

3.11 If ||Ûn+1 − Ûn|| < tolU , ||Ĥn+1 − Ĥn|| < tolW and || Ĵn+1 − Ĵn|| < tolJ , stop. Otherwise, go back to Step 3 with

guess Ûn+1, Ĥn+1 and Ĵn+1.

A.2 Solving the Kolmogorov Forward Equation

Problem: Find gh(ŵ) and gu(ŵ) such that

(
δ + s(ŵ) f (ŵ∗

jj(ŵ)) + β̃(ŵ)
)

gh(ŵ) = −(−γ)(gh)′(ŵ) +
σ2

2
(gh)′′(ŵ)

A4



+

ˆ [
1(ŵ∗

jj(x) = ŵ)s(x) f (ŵ) + 1(ŵ∗
b (x) = ŵ)β̃(x)

]
gh(x)dx ∀ŵ ∈ (Ŵ j∗ ∩ Ŵh∗)\{ŵ∗

u},

f (ŵ∗
u)gu(ŵ) = −(−γ)(gu)′(ŵ) +

σ2

2
(gu)′′(ŵ) ∀ŵ ∈ R\{ŵ∗

u},

and

gh(ŵ−) = gh(ŵ+) = 0,

lim
ŵ→−∞

gu(ŵ) = lim
ŵ→∞

gu(ŵ) = 0,

1 =

ˆ ∞

−∞
gu(ŵ)dŵ +

ˆ ŵ+

ŵ−
gh(ŵ)dŵ,

f (ŵ∗
u)(1 − E) = δE +

σ2

2

[
lim

ŵ↓ŵ−
(gh)′(ŵ)− lim

ŵ↑ŵ+
(gh)′(ŵ)

]
,

where β̃(x) := β+G+(∆+ Ĵ(x)) + β−G−(∆− Ĵ(x)). To solve this, we can discretize each equation. Let

AW := −diag(δ) +Az + diag(s∗)
[
Ajjdiag( f (θ))− diag

(
Ajj f (θ)

)]
+ diag

(
β+G+(∆+ Ĵ∗)1{ŵ∗

b > ŵ}+ β−G−(∆− Ĵ∗)1{ŵ∗
b < ŵ}

)
[Ab − I]

Here, the operator Az should have a reflecting barrier. Note that, relative to the solution of the HJBVI equations, the Az

operator uses γ and not γ̂. Let Ix be the diagonal matrix with entries equal to one if condition x is satisfied. Then, the above

system of equations can be expressed as
Iŵj∈(Ŵ j∗∩Ŵ h∗)\{ŵ∗

u}A
T
W + Iŵj /∈(Ŵ j∗∩Ŵ h∗)\{ŵ∗

u} 0

0 Iŵj ̸=ŵ∗
u

(
AT

z − f (ŵ∗
u)I
)

[∆w, . . . , ∆w] [∆w, . . . , ∆w]

−
(

δ∆w[1, . . . , 1] + σ2

2∆w

[
[0, . . . , 0,−1{ŵj = ŵ−}, 1, 0, . . . , 0]− [0, . . . , 0,−1, 1{ŵj = ŵ+}, 0, . . . , 0]

])
f (ŵ∗

u)∆w[1, . . . , 1]


gh

gu

 =


0

0

1

0


Use a linear solver to solve for gh and gu.7

A.3 Solving for Transition Dynamics

Summary of equations: Define the transformed drift γ̂ := γ + σ2 and the transformed discount factor ρ̂ := ρ − γ − σ2/2.

1. Free entry condition for θ̂(ŵ, t):

K̃ = θ̂(ŵ, t)−α Ĵ(ŵ, t).

2. Normalized value of unemployment:

ρ̂Û(t) = B̃ + θ̂(ŵ∗
u(t))

1−α Ĥ(ŵ∗
u(t), t) +

∂Û(t)
∂t

,

where ŵ∗
u(t) = arg maxŵu

θ̂(ŵu, t)1−α Ĥ(ŵu, t).

3. Normalized value function of an employed worker:

7Note that the boundary conditions for gu are not included in the above equations, because they are replaced by the reflecting
barrier in Az.
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ρ̂Ĥ(ŵ, t) = max
{

0 , eŵ − ρ̂Û(t)− µ (s∗(ŵ, t))1+1/ϕ

1 + 1/ϕ
− δĤ(ŵ, t)− γ̂

∂Ĥ(ŵ, t)
∂ŵ

+
σ2

2
∂2Ĥ(ŵ, t)

∂ŵ2

+
(

β+G+(∆+ Ĵ(ŵ, t))1{ŵ∗
b (ŵ, t) > ŵ}+ β−G−(∆− Ĵ(ŵ, t))1{ŵ∗

b (ŵ, t) < ŵ}
) [

Ĥ(ŵ∗
b , t)− Ĥ(ŵ, t)

]
+ s∗(ŵ, t) f (θ̂(ŵ∗

jj(ŵ, t), t))[Ĥ(ŵ∗
jj(ŵ, t), t)− Ĥ(ŵ, t)] +

∂Ĥ(ŵ, t)
∂t

}
, ∀ŵ ∈ Ŵ j∗

t

and Ĥ(ŵ, t) = 0 ∀ŵ /∈ Ŵ j∗
t , where s∗(ŵ, t) =

(
f (θ̂(ŵ∗

jj(ŵ,t)))[Ĥ(ŵ∗
jj(ŵ,t),t)−Ĥ(ŵ,t)]

µ

)ϕ

and ŵ∗
jj(ŵ, t) = arg maxwjj

f (θ(ŵjj, t))[Ĥ(ŵjj, t)−

Ĥ(ŵ, t)] and ŵ∗
b (ŵ, t) = arg maxŵb

(
Ĵ(ŵb, t)− Ĵ(ŵ, t)

)χ (Ĥ(ŵb, t)− Ĥ(ŵ, t)
)1−χ.

4. Normalized value function of a filled vacancy:

ρ̂ Ĵ(ŵ, t) = max
{

0 , 1 − eŵ − δ Ĵ(ŵ, t)− γ̂
∂ Ĵ(ŵ, t)

∂ŵ
+

σ2

2
∂2 Ĵ(ŵ, t)

∂ŵ2

+
(

β+G+(∆+ Ĵ(ŵ, t))1{ŵ∗
b (ŵ, t) > ŵ}+ β−G−(∆− Ĵ(ŵ, t))1{ŵ∗

b (ŵ, t) < ŵ}
) [

Ĵ(ŵ∗
b , t)− Ĵ(ŵ, t)

]
− s∗(ŵ, t) f (θ̂(ŵ∗

jj(ŵ, t))) Ĵ(ŵ, t) +
∂ Ĵ(ŵ, t)

∂t

}
, ∀ŵ ∈ Ŵh∗

t

and Ĵ(ŵ, t) = 0 ∀ŵ /∈ Ŵh∗
t .

5. Optimal bargaining:

ŵ∗
+(ŵ) = arg max

ŵ+≥ŵ

(
Ĵ(ŵ+)− Ĵ(ŵ)

)1−χ (Ĥ(ŵ+)− Ĥ(ŵ)
)χ

ŵ∗
−(ŵ) = arg max

ŵ−≤ŵ

(
Ĵ(ŵ−)− Ĵ(ŵ)

)1−χ (Ĥ(ŵ−)− Ĥ(ŵ)
)χ .

6. Optimal continuation regions:

Ŵh∗
t = {ŵ : Ĥ(ŵ, t) > 0 or eŵ > ρ̂Û(t)},

Ŵ j∗
t = {ŵ : Ĵ(ŵ, t) > 0 or 1 − eŵ > 0}.

Solution Algorithm:

1. Define equidistant grids Ĥ = {ŵ1, . . . , ŵNw}, where the ∆w ≡ ŵi − ŵi−1. Then, define the time step ∆t ≡ (∆w/σ)2.

2. Fix a terminal time T and impose Ĥ(ŵ, T) = Ĥ(ŵ), Ĵ(ŵ, T) = Ĵ(ŵ) and Û(T) = Û.

3. Solve the value functions by backward induction. Suppose we are finding the solution for period 0 ≤ t < T:

3.1 Solve the game between the employed worker and the firm using the implicit method (and using the notation

t + 1 ≡ t + ∆t). The value of the worker can be written as

ρ̂Ĥt = max
{

0 , eŵ − ρ̂Ût+1 −
µ
(
s∗t+1(ŵ)

)1+1/ϕ

1 + 1/ϕ
+

Ĥt+1 − Ĥt

∆t
+AW ,t+1Ĥt

}
, ∀ŵi ∈ Ŵ j∗

t

ρ̂Ĥt = 0 ∀ŵi /∈ Ŵ j∗
t ,

where

AW ,t+1 ≡ −diag(δ) +Az + diag(s∗t+1)
[
Ajj,t+1diag( f (θt+1))− diag

(
Ajj,t+1 f (θt+1)

)]
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+
(

β+G+(∆+ Ĵt)1{ŵ∗
b,t+1 > ŵ}+ β−G−(∆− Ĵt)1{ŵ∗

b,t+1 < ŵ}
) [

Ab,t+1 − I
]

,

with

ŵ∗
jj,t+1(ŵi) = arg max

ŵjj

f
(

θt+1(ŵjj)
) [

Ĥt+1(ŵjj)− Ĥt+1(ŵi)
]

s∗t+1(ŵi) =

 f
(

θt+1(ŵ∗
jj,t+1(ŵi))

) [
Ĥt+1(ŵ∗

jj,t+1(ŵi))− Ĥt+1(ŵi)
]

µ

ϕ

Ajj,t+1 l,m
=

1, if ŵi = ŵl and ŵ∗
jj,t+1(ŵi) = ŵm

0, otherwise.

ŵ∗
b,t+1(ŵi) = arg max

ŵb

[
Ĵt+1(ŵb)− Ĵt+1(ŵi)

]1−χ [Ĥt+1(ŵb)− Ĥt+1(ŵi)
]χ

Ab,t+1 l,m =

1, if ŵi = ŵl and ŵ∗
b,t+1(ŵi) = ŵm

0, otherwise.

θt+1(ŵi) =

(
Ĵt+1(ŵi)

K̃

)1/α

.

This is a LCP with ζ ≡ Ĥt , M ≡
(

ρ̂ + 1
∆t

)
I − 1{ŵ ∈ Ẑ j

t+1}AW ,t+1, q ≡ −1{ŵ ∈ Ẑ j
t+1}

(
eŵ − ρ̂Ût+1 −

µ(s∗t+1)
1+1/ϕ

1+1/ϕ + Ĥt+1
∆t

)
.

Similarly, the value of the firm can be written as

ρ̂ Ĵt = max
{

0 , 1 − eŵ +
Ĵt+1 − Ĵt

∆t
+AJ,t+1 Ĵt

}
, ∀ŵi ∈ Ĉh

t

ρ̂ Ĵt = 0 ∀ŵi ∈ (Ĉh
t )

c,

where

AJ,t+1 ≡ −diag(δ) +Az − diag(s∗t+1)diag
(
Ajj,t+1 f (θt+1)

)
+
(

β+G+(∆+ Ĵt)1{ŵ∗
b,t+1 > ŵ}+ β−G−(∆− Ĵt)1{ŵ∗

b,t+1 < ŵ}
) [

Ab,t+1 − I
]

.

This is a LCP with ζ ≡ Ĵ, M ≡
(

ρ̂ + 1
∆t

)
I − 1{ŵ ∈ Ẑh

t+1}AJ,t+1, q ≡ −1{ŵ ∈ Ẑh
t+1}

(
1 − eŵ + Ĵt+1

∆t

)
.

3.2 Update value when unemployed:

ŵ∗
u,t+1 = arg max

ŵu

θt+1(ŵu)
1−α Ĥt+1(ŵu)

3.3 Solve for Ût from:

ρ̂Ût = B̃ + θt+1(ŵ∗
u,t+1)

1−α Ĥt+1(ŵ∗
u,t+1) +

Ût+1 − Ût
∆t

3.4 Iterate steps 3.1 to 3.4 until convergence.

4. Go back to step 3 to solve the values for period t − 1.
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A.3.1 Solving the Kolmogorov Forward Equation during the Transition

Problem: Find the secuence gh(ŵ, t) and gu(ŵ, t) such that:

∂gh(ŵ, t)
∂t

= −(−γ)
∂gh(ŵ, t)

∂ŵ
+

σ2

2
∂2gh(ŵ, t)

∂ŵ2 −
(

δ + st(ŵ) f (θt(ŵ∗
jj,t(ŵ))) + β̃t(ŵ)

)
gh(ŵ, t)

+

ˆ [
1(ŵ∗

jj,t(x) = ŵ)st(x) f (θt(ŵ)) + 1(ŵ∗
b,t(x) = ŵ)β̃t(x)

]
gh(x, t)dx ∀ŵ ∈ (ŵ−

t , ŵ+
t )\{ŵ∗

u,t},

∂gu(ŵ, t)
∂t

= −(−γ)
∂gu(ŵ, t)

∂ŵ
+

σ2

2
∂2gu(ŵ, t)

∂ŵ2 − f (θt(ŵ∗
u,t))gu(ŵ) ∀ŵ ∈ R\{ŵ∗

u,t}.

and

gh(ŵ−
t , t) = gh(ŵ+

t , t) = 0,

lim
ŵ→−∞

gu(ŵ, t) = lim
ŵ→∞

gu(ŵ, t) = 0,

1 =

ˆ ∞

−∞
gu(ŵ, t)dŵ +

ˆ ŵ+

ŵ−
gh(ŵ, t)dŵ,

∂Et
∂t

= f (θt(ŵ∗
u,t))(1 − Et)− δEt −

σ2

2

[
lim

ŵ↓ŵ−
t

∂gh(ŵ, t)
∂ŵ

− lim
ŵ↑ŵ+

t

∂gh(ŵ, t)
∂ŵ

]
,

where β̃(x) :=
(

β+G+(∆+ Ĵt)1{ŵ∗
b,t > x}+ β−G−(∆− Ĵt)1{ŵ∗

b,t < x}
)

. To solve this, we can discretize each equation using the

implicit method. Let

At ≡ −diag(δ) +Az,t + diag(s∗t )
[
Ajj,tdiag( f (θt))− diag

(
Ajj,t f (θt)

)]
+
(

β+G+(∆+ Ĵt)1{ŵ∗
b,t > ŵ}+ β−G−(∆− Ĵt)1{ŵ∗

b,t < ŵ}
) [

Ab,t − I
]

,

Let It
x be the diagonal matrix with entries equal to one if condition x is satisfied in period t. Then, the above equations can be

expressed as


It

ŵj∈(Ŵ
j∗
t ∩Ŵh∗

t )\{ŵ∗
u,t}
[
I − ∆tAT

t
]
+ I

ŵj /∈(Ŵ j∗
t ∩Ŵh∗

t )\{ŵ∗
u,t}

0

0 It
ŵj ̸=ŵ∗

u,t

[
I − ∆t

[
AT

z,t − f (θt(ŵ∗
u,t))I

]]
[∆w, . . . , ∆w] [∆w, . . . , ∆w](

(1 + ∆tδ)∆w[1, . . . , 1] + ∆tσ2

2∆w

[
[0, . . . , 0,−1{ŵj = ŵ−

t }, 1, 0, . . . , 0]− [0, . . . , 0,−1, 1{ŵj = ŵ+
t }, 0, . . . , 0]

])
−∆t f (θt(ŵ∗

u,t))∆w[1, . . . , 1]


gh

t+1

gu
t+1

 = g̃t,

where g̃t ≡ [It
ŵj∈(Ŵ j∗

t ∩Ŵ h∗
t )\{ŵ∗

u,t}
gh

t + Iŵj /∈(Ŵ j∗
t ∩Ŵ h∗

t )\{ŵ∗
u,t}

0; It
ŵj ̸=ŵ∗

u,t
gu

t ; 1; ∆w[1, . . . , 1]gh
t ]. Note that the boundary conditions

for gu are not included in the above equations, because they are replaced by the reflecting barrier in Az.
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